Using process algebra to develop predator-prey models of within-host parasite dynamics.
نویسندگان
چکیده
As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system.
منابع مشابه
Dynamics of an eco-epidemic model with stage structure for predator
The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...
متن کاملThe Stability of Some Systems of Harvested Lotka-Volterra Predator-Prey Equations
Some scientists are interesting to study in area of harvested ecological modelling. The harvested population dynamics is more realistic than other ecological models. In the present paper, some of the Lotka-Volterra predator-prey models have been considered. In the said models, existing species are harvested by constant or variable growth rates. The behavior of their solutions has been analyzed ...
متن کاملLIMITED GROWTH PREY MODEL AND PREDATOR MODEL USING HARVESTING
In this paper, we have proposed a study on controllability and optimal harvestingof a prey predator model and mathematical non linear formation of the equation equilibriumpoint of Routh harvest stability analysis. The problem of determining the optimal harvestpolicy is solved by invoking Pontryagin0s maximum principle dynamic optimization of theharvest policy is studied by taking the combined h...
متن کاملAre classical predator-prey models relevant to the real world?
Mathematical models of predator-prey population dynamics are widely used for predicting the effect of predators as biocontrol agents, but the assumptions of the models are more relevant to parasite-host systems. Predator-prey systems, at least in insects, substantially differ from what is assumed by these models. The main differences are: (i) Juveniles and adults have to be considered as two di...
متن کاملApplying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions.
Predator-prey models are often applied to the interactions between host immunity and parasite growth. A key component of these models is the immune system's functional response, the relationship between immune activity and parasite load. Typically, models assume a simple, linear functional response. However, based on the mechanistic interactions between parasites and immunity we argue that alte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 329 شماره
صفحات -
تاریخ انتشار 2013